2,246 research outputs found

    Spinal cord NR1 serine phosphorylation and NR2B subunit suppression following peripheral inflammation

    Get PDF
    BACKGROUND: Spinal cord N-methyl-D-aspartate (NMDA) receptors are intimately involved in the development and maintenance of central sensitization. However, the mechanisms mediating the altered function of the NMDA receptors are not well understood. In this study the role of phosphorylation of NR1 splice variants and NR2 subunits was examined following hind paw inflammation in rats. We further examined the level of expression of these proteins following the injury. RESULTS: Lumbar spinal cord NR1 subunits were found to be phosphorylated on serine residues within two hours of the induction of hind paw inflammation with carrageenan. The enhanced NR1 serine phosphorylation reversed within six hours. No phosphorylation on NR1 threonine or tyrosine residues was observed. Likewise, no NR2 subunit phosphorylation was observed on serine, threonine or tyrosine residues. An analysis of NR1 and NR2 protein expression demonstrated no change in the levels of NR1 splice variants or NR2A following the inflammation. However, spinal cord NR2B expression was depressed by the hind paw inflammation. The expression of NR2B remained depressed for more than one week following initiation of the inflammation. CONCLUSION: These data suggest that NR1 serine phosphorylation leads to an initial increase in NMDA receptor activity in the spinal cord following peripheral injury. The suppression of NR2B expression suggests compensation for the enhanced nociceptive activity. These data indicate that spinal cord NMDA receptors are highly dynamic in the development, maintenance and recovery from central sensitization following an injury. Thus, chronic pain therapies targeted to NMDA receptors should be designed for the exact configuration of NMDA receptor subunits and post-translational modifications present during specific stages of the disease

    The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    Get PDF
    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with Ssubstitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening

    Spontaneous R-Parity Violation, A4A_4 Flavor Symmetry and Tribimaximal Mixing

    Full text link
    We explore the possibility of spontaneous R parity violation in the context of A4A_4 flavor symmetry. Our model contains SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet matter chiral superfields which are arranged as triplet of A4A_4 and as well as few additional Higgs chiral superfields which are singlet under MSSM gauge group and belong to triplet and singlet representation under the A4A_4 flavor symmetry. R parity is broken spontaneously by the vacuum expectation values of the different sneutrino fields and hence we have neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in our model, in addition to the standard model neutrino- gauge singlet neutrino, gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we have an extended neutral fermion mass matrix. We explore the low energy neutrino mass matrix for our model and point out that with some specific constraints between the sneutrino vacuum expectation values as well as the MSSM gauge singlet Higgs vacuum expectation values, the low energy neutrino mass matrix will lead to a tribimaximal mixing matrix. We also analyze the potential minimization for our model and show that one can realize a higher vacuum expectation value of the SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet sneutrino fields even when the other sneutrino vacuum expectation values are extremely small or even zero.Comment: 18 page

    Examining a staging model for anorexia nervosa: empirical exploration of a four stage model of severity.

    Get PDF
    Background: An illness staging model for anorexia nervosa (AN) has received increasing attention, but assessing the merits of this concept is dependent on empirically examining a model in clinical samples. Building on preliminary findings regarding the reliability and validity of the Clinician Administered Staging Instrument for Anorexia Nervosa (CASIAN), the current study explores operationalising CASIAN severity scores into stages and assesses their relationship with other clinical features. Method: In women with DSM-IV-R AN and sub-threshold AN (all met AN criteria using DSM 5), receiver operating curve (ROC) analysis (n = 67) assessed the relationship between the sensitivity and specificity of each stage of the CASIAN. Thereafter chi-square and post-hoc adjusted residual analysis provided a preliminary assessment of the validity of the stages comparing the relationship between stage and treatment intensity and AN sub-types, and explored movement between stages after six months (Time 3) in a larger cohort (n = 171). Results: The CASIAN significantly distinguished between milder stages of illness (Stage 1 and 2) versus more severe stages of illness (Stages 3 and 4), and approached statistical significance in distinguishing each of the four stages from one other. CASIAN Stages were significantly associated with treatment modality and primary diagnosis, and CASIAN Stage at Time 1 was significantly associated with Stage at 6 month follow-up. Conclusions: Provisional support is provided for a staging model in AN. Larger studies with longer follow-up of cases are now needed to replicate and extend these findings and evaluate the overall utility of staging as well as optimal staging models

    Phase transitions in biological membranes

    Full text link
    Native membranes of biological cells display melting transitions of their lipids at a temperature of 10-20 degrees below body temperature. Such transitions can be observed in various bacterial cells, in nerves, in cancer cells, but also in lung surfactant. It seems as if the presence of transitions slightly below physiological temperature is a generic property of most cells. They are important because they influence many physical properties of the membranes. At the transition temperature, membranes display a larger permeability that is accompanied by ion-channel-like phenomena even in the complete absence of proteins. Membranes are softer, which implies that phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal propagation phenomena related to nerve pulses are strongly enhanced. The position of transitions can be affected by changes in temperature, pressure, pH and salt concentration or by the presence of anesthetics. Thus, even at physiological temperature, these transitions are of relevance. There position and thereby the physical properties of the membrane can be controlled by changes in the intensive thermodynamic variables. Here, we review some of the experimental findings and the thermodynamics that describes the control of the membrane function.Comment: 23 pages, 15 figure

    Chemotherapy-Induced Late Transgenerational Effects in Mice

    Get PDF
    To our knowledge, there is no report on long-term reproductive and developmental side effects in the offspring of mothers treated with a widely used chemotherapeutic drug such as doxorubicin (DXR), and neither is there information on transmission of any detrimental effects to several filial generations. Therefore, the purpose of the present paper was to examine the long-term effects of a single intraperitoneal injection of DXR on the reproductive and behavioral performance of adult female mice and their progeny. C57BL/6 female mice (generation zero; G0) were treated with either a single intraperitoneal injection of DXR (G0-DXR) or saline (G0-CON). Data were collected on multiple reproductive parameters and behavioral analysis for anxiety, despair and depression. In addition, the reproductive capacity and health of the subsequent six generations were evaluated. G0-DXR females developed despair-like behaviors; delivery complications; decreased primordial follicle pool; and early lost of reproductive capacity. Surprisingly, the DXR-induced effects in oocytes were transmitted transgenerationally; the most striking effects being observed in G4 and G6, constituting: increased rates of neonatal death; physical malformations; chromosomal abnormalities (particularly deletions on chromosome 10); and death of mothers due to delivery complications. None of these effects were seen in control females of the same generations. Long-term effects of DXR in female mice and their offspring can be attributed to genetic alterations or cell-killing events in oocytes or, presumably, to toxicosis in non-ovarian tissues. Results from the rodent model emphasize the need for retrospective and long-term prospective studies of survivors of cancer treatment and their offspring

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    An A4 flavor model for quarks and leptons in warped geometry

    Get PDF
    We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a warped extra dimensional setup to explain the observed pattern of quark and lepton masses and mixings. The main advantages of this choice are the explanation of fermion mass hierarchies by wave function overlaps, the emergence of tribimaximal neutrino mixing and zero quark mixing at the leading order and the absence of tree-level gauge mediated flavor violations. Quark mixing is induced by the presence of bulk flavons, which allow for cross-brane interactions and a cross-talk between the quark and neutrino sectors, realizing the spontaneous symmetry breaking pattern A4 --> nothing first proposed in [X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the observed quark mixing pattern can be explained in a rather economical way, including the CP violating phase, with leading order cross-interactions, while the observed difference between the smallest CKM entries V_{ub} and V_{td} must arise from higher order corrections. We briefly discuss bounds on the Kaluza-Klein scale implied by flavor changing neutral current processes in our model and show that the residual little CP problem is milder than in flavor anarchic models.Comment: 34 pages, 2 figures; version published in JHE
    corecore